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The linear stability of three-dimensional vortices in rotating, stratified flows has been
studied by analysing the non-hydrostatic inviscid Boussinesq equations. We have
focused on a widely used model of geophysical and astrophysical vortices, which
assumes an axisymmetric Gaussian structure for pressure anomalies in the horizontal
and vertical directions. For a range of Rossby numbers (−0.5<Ro< 0.5) and Burger
numbers (0.02<Bu<2.3) relevant to observed long-lived vortices, the growth rate and
spatial structure of the most unstable eigenmodes have been numerically calculated
and presented as a function of Ro–Bu. We have found neutrally stable vortices only
over a small region of the Ro–Bu parameter space: cyclones with Ro ∼ 0.02–0.05
and Bu∼ 0.85–0.95. However, we have also found that anticyclones in general have
slower growth rates compared to cyclones. In particular, the growth rate of the most
unstable eigenmode for anticyclones in a large region of the parameter space (e.g.
Ro< 0 and 0.5 . Bu . 1.3) is slower than 50 turnaround times of the vortex (which
often corresponds to several years for ocean eddies). For cyclones, the region with
such slow growth rates is confined to 0< Ro< 0.1 and 0.5 . Bu . 1.3. While most
calculations have been done for f /N̄ = 0.1 (where f and N̄ are the Coriolis and
background Brunt–Väisälä frequencies), we have numerically verified and explained
analytically, using non-dimensionalized equations, the insensitivity of the results to
reducing f /N̄ to the more ocean-relevant value of 0.01. The results of our stability
analysis of Gaussian vortices both support and contradict the findings of earlier
studies with QG or multilayer models or with other families of vortices. The results
of this paper provide a stepping stone to study the more complicated problems of
the stability of geophysical (e.g. those in the atmospheres of giant planets) and
astrophysical vortices (in accretion disks).
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1. Introduction
Coherent vortices are prominent features of geophysical and astrophysical turbulent

flows. Examples include the oceanic vortices such as Gulf Stream rings (Olson 1991)
and Mediterranean eddies (Meddies) (McWilliams 1985; Armi et al. 1988) and similar
vortices in other regions including the Ulleung Basin, Red Sea, and bay of Biscay
(Meschanov & Shapiro 1998; Carton 2001; Chang et al. 2004), as well as vortices in
the atmosphere of gas giants such as Jupiter and Saturn (Marcus 1993; Vasavada &
Showman 2005; O’Neill, Emanuel & Flierl 2015), extreme-weather-causing blocking
anticyclones in the Earth’s atmosphere (Tyrlis & Hoskins 2008; Hassanzadeh, Kuang
& Farrell 2014; Hassanzadeh & Kuang 2015) and vortices in the protoplanetary
disks where stars and planets form (Barge & Sommeria 1995; Barranco & Marcus
2005; Marcus et al. 2013). Understanding the dynamics of these vortices, such as
their formation, longevity and stability, is of great interest as these vortices can
strongly affect their surroundings, for example by efficiently mixing and transporting
heat, momentum and material (Gascard et al. 2002; Marcus 2004; Dong et al. 2014;
Marcus et al. 2015). Despite their widely different environments and time and length
scales, a common aspect of these vortices is that their dynamics is predominantly
controlled by the rotation, stratification and (in some cases) shear of their environment.

The linear and nonlinear (i.e. finite-amplitude) stability of vortices in rotating,
stratified flows has been extensively studied in the past 30 years. However, the
majority of those studies have used idealized models for the vortices or for the
governing equations. For example, Ikeda (1981), Helfrich & Send (1988) and Benilov
(2005b) studied quasi-geostrophic (QG) vortices in discrete two-layer flows; Gent &
McWilliams (1986) studied columnar (i.e. with no variation in the vertical direction)
QG vortices; Flierl (1988) examined columnar and three-dimensional (3-D) QG
vortices; Nguyen et al. (2012) studied 3-D QG vortices; Carton & McWilliams
(1989) investigated one- and two-layer QG vortices; Dewar & Killworth (1995),
Killworth, Blundell & Dewar (1997), Dewar, Killworth & Blundell (1999), Baey
& Carton (2002), Benilov (2004), Benilov (2005a), Benilov & Flanagan (2008),
Lahaye & Zeitlin (2015) and Benilov, Broutman & Kuznetsova (1998) examined
two-layer ageostrophic vortices (the latter also studied geostrophic vortices); Katsman
et al. (2003) examined multilayer ageostrophic vortices; Smyth & McWilliams
(1998), Billant, Dritschel & Chomaz (2006) and Yim & Billant (2015) studied
columnar ageostrophic vortices; Stegner & Dritschel (2000) examined shallow-water
ageostrophic vortices; Lazar et al. (2013a) and Lazar, Stegner & Heifetz (2013b)
studied shallow-water inertially unstable vortices; Sutyrin (2015) examined two- and
three-layer ageostrophic vortices; Brunner-Suzuki, Sundermeyer & Lelong (2012)
investigated the evolution of 3-D ageostrophic vortices (but this was not technically a
stability study because the initial vortices were created through geostrophic adjustment
and thus out of equilibrium); and Tsang & Dritschel (2015) also studied the evolution,
rather than the stability, of 3-D ageostrophic vortices made from piecewise-constant
elements of potential vorticity that were not exact equilibrium solutions of their
equations of motion. One study focused on 3-D equilibrium vortices using the full
3-D Boussinesq equation is that of Yim, Billant & Ménesguen (2016) who examined
the linear stability of a specific family of vortices with Gaussian angular velocity.

Two of the main motivations for some of the studies listed above have been
(i) the observed stability of the long lived, approximately axisymmetric vortices in
the oceans and (ii) the observed cyclone–anticyclone asymmetry in the oceans and
planetary atmospheres. It has been observed through tracking individual vortices
and by satellite observations that coherent oceanic vortices with radii of tens to
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hundreds of kilometres can last for months and even years (∼1/2–3) while remaining
nearly axisymmetric (Lai & Richardson 1977; Armi et al. 1989; Olson 1991; Chelton,
Schlax & Samelson 2011). However, most theoretical studies of axisymmetric vortices
in rotating stratified flows have found them to be linearly unstable (usually with fast
growth rates that are incompatible with the observed longevity of these vortices),
unless unrealistic parameters or vertical structures are assumed (see the discussions
in Stegner & Dritschel 2000; Benilov 2004, 2005b; Sutyrin 2015). Observations
of planetary atmospheres (Mac Low & Ingersoll 1986; Cho & Polvani 1996), and
oceans at the mesoscales (McWilliams 1985; Chelton et al. 2007, 2011; Mkhinini
et al. 2014) show that long-lived vortices are predominantly anticyclones. Whether this
asymmetry is due to differences between the stability (linear or nonlinear) properties
of cyclones and anticyclones requires a better understanding of how stability changes
with the Rossby number. It should be noted that factors other than stability can be
responsible for, or at least contribute to, the observed cyclone–anticyclone asymmetry;
for example the creation mechanisms might favour anticyclones (Perret, Dubos &
Stegner 2011), anticyclones might decay slower than cyclones (Hoskins, McIntyre &
Robertson 1985, § 7; Graves, McWilliams & Montgomery 2006) or coherent cyclones
might be harder to observe in planetary atmospheres than anticyclones (Marcus 2004).

While valuable information on the stability of vortices in rotating stratified flows,
vortices in planetary atmospheres and oceanic eddies has been gained through the
aforementioned studies, further investigation of the linear and nonlinear stability that
extends beyond the simplifications and limitations of these studies is still needed. In
the current study, we address the stability of isolated, 3-D, axisymmetric vortices
in rotating, stably stratified, inviscid flows by analysing the full non-hydrostatic
Boussinesq equations with an f -plane approximation in a 3-D domain with periodic
boundary conditions (modified to simulate an unbounded flow). We focus on a widely
used model of geophysical and astrophysical vortices, which have pressure anomalies
that are Gaussian in the radial and vertical directions and are in exact equilibrium
(e.g. McWilliams 1985; van Heijst & Clercx 2009; Chelton et al. 2011; Hassanzadeh,
Marcus & Le Gal 2012). Our work extends the analyses of the previous studies in
several ways, including:

(i) By using the Boussinesq equations, we can study vortex dynamics with any
Rossby number and internal stratification. Here we focus on cyclones and
anticyclones in the geostrophic balance regime (−0.5 < Ro < 0.5), which is the
range of Ro relevant to most long-lived geophysical and astrophysical vortices
(e.g. Olson 1991; Aubert et al. 2012) (all parameters and dimensionless numbers
are defined in § 2). The vertical stratification inside the 3-D equilibrium vortices
that are studied here can be much stronger or much weaker compared to the
stratification of the background (i.e. far from the vortex) flow, which is also
the case for many oceanic and atmospheric vortices (e.g. Aubert et al. 2012).
Considering vortices with finite Rossby numbers and with internal stratifications
that significantly differ from the stratification of the background flow extends
the stability analysis well beyond the QG approximation.

(ii) Geophysical and astrophysical vortices that are far from both horizontal
and vertical boundaries (e.g. free surfaces or solid surfaces) and that are in
quasi-equilibrium have been observed to be three-dimensional (rather than 2-D
Taylor columns); examples include Jupiter’s Great Red Spot (Marcus 1993),
Meddies (Aubert et al. 2012; Bashmachnikov et al. 2015) and zombie vortices
in the protoplanetary disks (Barranco & Marcus 2005; Marcus et al. 2013,
2015). The vertical length scales of these vortices are finite and usually much
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smaller than their horizontal length scales, which can be understood as a direct
consequence of the gradient–wind balance (see Hassanzadeh et al. 2012). The
present study extends the rigorous stability analysis of Boussinesq vortices
beyond barotropic Taylor columns.

(iii) Exploiting the universal scaling law of Aubert et al. (2012) and Hassanzadeh
et al. (2012), the 3-D baroclinic vortices studied here are exact equilibrium
solutions of the full 3-D non-hydrostatic Boussinesq equations (see § 2.3). The
exact equilibrium is particularly important for a rigorous linear analysis, which
is the subject of this paper.

(iv) By using the full, 3-D, non-hydrostatic Boussinesq equations, we avoid
restrictions on the vertical structure of the vortex or background flow that result
from the QG or multilayer models discussed above. Although here we focus
on background flows with stable stratification such that the density decreases
linearly with height (i.e. constant Brunt–Väisälä frequency N̄), background flows
with more realistic N̄(z) profiles can be easily included in this framework.

(v) The family of Gaussian vortices that is studied here has been shown to fit
many types of oceanic and laboratory vortices reasonably well (e.g. van Heijst
& Clercx 2009; Chelton et al. 2011) and has been widely used as a model in
various theoretical studies (e.g. McWilliams 1985; Morel & McWilliams 1997;
Hassanzadeh et al. 2012; Negretti & Billant 2013). Furthermore in this model, all
fields (e.g. velocity, potential vorticity and density) are continuous and smooth,
which eliminate unphysical instabilities that can arise from discontinuities (which
are present, for example, when vortices are modelled with piecewise-constant
shells or patches of potential vorticity).

In this paper we address the linear stability of 3-D vortices in rotating stratified
flows and discuss the growth rates and most unstable eigenmodes as functions of the
Rossby number Ro (for −0.5 < Ro < 0.5), the Burger number Bu (for 0.02 < Bu <
2.3) and f /N̄ = 0.1 and 0.01. One of the main purposes of this paper is to extend
the linear stability analysis of a specific family of 3-D equilibrium vortices beyond
some of the approximations or constraints imposed in previous studies and produce
the parameter map of stability for 3-D non-hydrostatic Boussinesq flows. We also
investigate how different modes take over as the most unstable one as the Burger
number changes and explore the vertical and horizontal structures of these modes and
their critical layers. We discuss how the stability properties found here compare with
those reported in other studies using QG or multilayer equations or using a different
vortex model. Furthermore, we show numerically that the linear stability of the family
of 3-D vortices that we examine is only weakly dependent on the value of f /N̄ for
f /N̄ 6 0.1 and we discuss the reason behind this behaviour.

The results of this paper improve the understanding of the generic stability
properties of 3-D vortices in rotating stratified flows, and have implications for
the dynamics of some of the geophysical and astrophysical vortices. These results are
most relevant to the stability of interior (i.e. far from boundaries) oceanic vortices
such as Meddies. It is acknowledged that the exclusion of horizontal and vertical
background shear, free surface, lateral boundaries, bottom topography, compressible
effects and vertical variation of N̄ limit the direct applicability of the current analysis
to other oceanic eddies and planetary and astrophysical vortices. However, the
numerical framework presented here can be readily adapted to account for the
aforementioned boundary conditions/physical processes in future studies, and the
results of this paper will be needed to evaluate the influence of these boundary
conditions/processes on the stability properties of these vortices.
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The remainder of this paper is structured as follows. The equations of motion,
numerical method, Gaussian vortex model and eigenmode solver are discussed in § 2.
The eigenmodes with critical layers are discussed in § 3 and the results of the linear
stability analysis and the stability map along with comparison with previous studies
are presented in § 4. Insensitivity of the most unstable modes to f /N̄ is discussed in
§ 5 and the radial and vertical structures of the most unstable modes are presented in
§ 6. Discussion and summary are in § 7.

2. Problem formulation
2.1. Equations of motion

The Boussinesq approximation of the equations of motion for 3-D rotating, stratified,
inviscid flows in the Cartesian coordinates (x, y, z), as observed in a frame rotating
with angular velocity ( f /2)ẑ, is (Vallis 2006)

Dv

Dt
=−
∇p
ρo
+ v× f ẑ+ bẑ,

Db
Dt
=−N̄2vz, ∇ · v = 0, (2.1a,b)

where the operator D/Dt ≡ ∂/∂t + v · ∇ is the material derivative, t denotes time,
v = (vx, vy, vz) is the 3-D velocity vector, f is the Coriolis frequency (constant in
our study) and g is the acceleration of gravity. The total pressure and the total
density of the fluid are ptot ≡ p̄(z)+ p(x, y, z, t) and ρtot ≡ ρ̄(z)+ ρ(x, y, z, t), where
ρ̄(z = 0) = ρo. We define the buoyancy as b(x, y, z, t) ≡ −gρ/ρo. Quantities with
a bar are properties of the equilibrium background flow (i.e. far from the vortex
where v→ 0, b→ 0, ρ→ 0 and p→ 0). The background pressure p̄ and density ρ̄

are in hydrostatic balance dp̄/dz = −ρ̄g. The background Brunt–Väisälä frequency
N̄ ≡
√
−(g/ρo)(dρ̄/dz) is assumed to be constant, so that ρ̄(z)= ρo(1− N̄2z/g).

In the above equations, we have ignored viscosity in the momentum equations and
diffusion in the density equation, which are reasonable approximations for atmospheric
and oceanic flows. Furthermore, we have dropped the planetary centrifugal term from
the momentum equations, assuming that the rotational Froude number f 2d/g is small
(Barcilon & Pedlosky 1967), where d is the distance between the centre of the vortex
and the planetary rotation axis.

2.2. Numerical method
A pseudo-spectral initial-value solver is developed to solve (2.1) in a triply periodic
domain with 256 or 512 Fourier modes in each direction. In numerical simulations
of strongly rotating stratified flows, resolving the fast inertia–gravity waves can
substantially limit the size of the time step 1t and thus increase the computational
cost. Here we use the semi-analytic method developed by Barranco & Marcus (2006)
for rotating stratified flows, which enables us to accurately and efficiently deal with
large f1t and N̄1t.

A vortex in the middle of a periodic domain interacts with its periodic images. To
minimize this interaction and its potential impact on the stability of the vortex (and
to simulate having an unbounded flow) the computational domain size is chosen to
be large compared to the vortex size: the domain size in the x and y directions, i.e.
the values of Lx and Ly are 7.5 (or more often 15) times larger than the initial vortex
diameter (2L), and, similarly, the domain size in the z direction Lz is 7.5 (or more
often 15) times larger than the initial vortex height (2H). There are two reasons
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for sometimes making the domain size very large. First, we wanted to ensure that
the periodic boundary conditions had no perceptible effects on the flow dynamics;
secondly, in the follow-up paper to this one (see our discussion § 7) we show that
unstable vortices often fragment with pieces of the initial vortices becoming widely
separated, so that the calculations require a large domain. To help simulate an
unbounded flow, we also added a cylindrical sponge layer near the boundaries of the
computational domain (see appendix A). The sponge layer, implemented as Rayleigh
drag and Newtonian cooling in (2.1), damps v and ρ outside a cylindrical surface of
diameter 24L and height 24H (for the large domain calculations) or 12L and height
12H (for the small domain calculations) around the centre of the domain. Another
advantage of adding the sponge layer is that it damps the reflection of the outgoing
inertia–gravity waves, and occasional detached filaments back to the domain at the
periodic boundaries. One more advantage of the axisymmetric sponge layer is that
we find that it prevents the (non-axisymmetric) periodic boundary conditions in x and
y from adding any significant non-axisymmetric perturbations to the initial vortices.
The latter is important when computing the stability of the vortices. One way of
determining if the domain size is too small is to compute the ratio of the magnitude
of each component of the velocity and density of a numerically computed eigenmode
at a damped location just inside the sponge layer to the maximum value of that
component over the entire domain. With the domain sizes presented here, that ratio
is always of order 10−4 (or smaller), but the ratio increases to values with orders as
large as 10−2 when the computational domain is reduced to (10L) × (10L) × (10H)
and a sponge layer with diameter of 8L and height 8H.

Hyperviscosities and hyperdiffusivities are added to our otherwise inviscid and non-
diffusive calculations to stabilize the code. See Barranco & Marcus (2006) for more
details.

2.3. Initial equilibria: Gaussian vortices
In this study we focus on 3-D axisymmetric baroclinic vortices that are initially in
horizontal cyclo-geostrophic balance and vertical hydrostatic balance, and hence they
are in gradient–wind balance (Vallis 2006). The initial vortex is centred at r = 0
and z = 0, where r denotes the radial coordinate. A widely used model for oceanic
and laboratory vortices is that of an axisymmetric vortex with a Gaussian pressure
distribution (e.g. McWilliams 1985)

p= poχ(r, z), (2.2)

where χ(r, z) ≡ exp [−(r/L)2 − (z/H)2]. Using (2.2) and the definitions presented in
§ 2.1, an exact, steady, axisymmetric equilibrium solution to the Boussinesq equations
in (2.1) is the vortex

vφ(r, z)=
fr
2

(
−1+

√
1− (8poχ(r, z))/(ρof 2L2)

)
, vr = vz = 0, (2.3)

b(r, z)=−
2poz
ρoH2

χ(r, z), (2.4)

where the cylindrical coordinate is used for convenience (vφ is the azimuthal velocity).
For any vortex, whether or not it is Gaussian, we shall define a quantity written with
a subscript ‘c’ to mean that the quantity is to be evaluated at the vortex centre, so Nc
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is the Brunt–Väisälä frequency at the centre of a vortex, or N2
c ≡ N̄2

+ (∂b/∂z)c. For
the Gaussian vortex described by (2.3)–(2.4),

N2
c = N̄2

− 2po/(ρoH2). (2.5)

As discussed in the next section, for some values of po, N2
c < 0, which means that

the density distribution is locally unstable at the vortex centre with heavy fluid over
light fluid (i.e. statically unstable). It is convenient to define the Rossby number Ro,
which by definition has Ro> 0 for a cyclone and Ro< 0 for an anticyclone, in terms
of the maximum (or minimum) value of a vortex’s vertical vorticity ωE, such that
Ro≡ωE/2f . For the Gaussian vortices described above ωE =ωc, and

Ro=ω(r= 0, z= 0)/2f =−1/2+
√

1/4− 2po/(ρof 2L2). (2.6)

Note that the Gaussian vortex has an aspect ratio of(
H
L

)2

=
−Ro(1+ Ro)f 2

N̄2[1− (Nc/N̄)2]
, (2.7)

in accord with the universal scaling law of Aubert et al. (2012) and Hassanzadeh et al.
(2012), which is valid for all vortices that are in cyclo-geostrophic and hydrostatic
balance. This can be seen by simply replacing 2po/ρo in (2.6) with H2(N̄2

−N2
c ) using

(2.5), and then solving for H/L.
The three independent dimensional parameters in the governing equations (2.1) are

f , N̄ and ρo. The sizes of the computational domain Lx×Ly×Lz have no effect (on the
dimensional analysis), due to the fact that the cylindrical sponge layer is far from the
vortices and that the net circulations of the flow are zero, which makes the velocity
due to the vortices fall off exponentially fast and be effectively zero at the sponge
layer. (See the definition of shielded below and in the appendices.) The equilibrium
Gaussian vortices in (2.2)–(2.4) introduce three additional dimensional parameters H,
L and po. Thus, there are three independent, dimensionless parameters that describe
the dynamics of Gaussian vortices. The choice of these parameters is not unique, but
in this paper we choose Ro, f /N̄, and

Bu≡
(

N̄
f

H
L

)2

= (Lr/L)2, (2.8)

where the latter is the Burger number and Lr ≡ HN̄/f is the deformation radius. It
should be noted that whether the vortices studied here are big or small depends on
the inverse of their Burger number, which is the square of the vortex radius over Lr.
Big vortices have small Bu and vice versa.

The Gaussian vortices defined in the above model are shielded. Here we define
a shielded flow as one in which the circulation computed with the z-component of
the vorticity over the entire (x, y)-plane for any fixed value of z is zero. In addition,
the circulation computed with the x-component of the vorticity over the (y, z)-plane
for any fixed value of x is zero; and the circulation computed with the y-component
of the vorticity over the (x, z)-plane for any fixed value of y is zero. (Note that
figure 1(b) does not violate our definition of shielded because the figure shows the
vertical component of the vorticity in an x–z plane, not an x–y plane.) Our governing
equations and boundary conditions show that if the initial flow is shielded, then the
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FIGURE 1. (Colour online) Vertical vorticity ω(r, z) and potential vorticity Q(r, z) for
Gaussian cyclones defined by (2.2)–(2.4). Panel (a) shows ω at z= 0 as a function of r as
a solid curve (blue, in colour) for Ro= 0.2, Bu= 0.1 and f /N̄ = 0.1. The thin and thick
dashed vertical lines show the boundaries of the core and the shield (see appendix B).
The solid vertical lines at large radii show, with increasing thickness from left to right,
where the boundary damping function fbd (see appendix A) reaches values of 0.01, 0.5
and 0.99, respectively. Panel (b) shows ω(r, z) in units of 2f in the r–z plane of the
vortex in (a). Dashed lines indicate the boundaries of the core and shield. (c–e) Show the
potential vorticity Q(r, z) for a Gaussian vortex with Ro= 0.2 and f /N̄= 0.1, for Bu= 0.1,
Bu= 1.0 and Bu= 2.0, respectively. For larger values of Bu, the distributions of Q and ω
are similar.

flow is shielded for all time. In practical terms, a shielded isolated vortex is one
in which the central core of the vortex is surrounded, or partially surrounded, by a
region (shield) of opposite vorticity and that the circulation quickly vanishes outside
the shield. For an arbitrary (i.e. not necessarily Gaussian) cyclonic vortex, the core
of a cyclone is a contiguous region at and near the vortex centre where the vertical
component of its vorticity ω is greater than or equal to zero. The shield is a region
around the core (usually looking like a shell or annular ring) located not too far from
the core, where ω < 0. The precise definitions that we use for core and shield are
in appendix B. The core and shield of an example Gaussian vortex are illustrated in
figure 1(a,b). The definitions of the core and shield of an anticyclone are analogous to
those of the cyclone. For Gaussian vortices and many other types of shielded cyclones,
outside the shield the amplitude of the vorticity decays exponentially with the radial
distance r (or rp with p> 2) from the vortex centre. In our calculations, the circulation
due to the vertical component of the vorticity

∫
ω(x, y, z) dx dy (where the integral is

over the entire x–y computational domain) at each value of z must remain zero due
to the periodic boundary conditions.

Commonly, in the studies of oceanic and atmospheric vortices, potential vorticity
(PV) is used to describe the vortices, instead of vertical vorticity, due to its
conservation property (Hoskins et al. 1985; Morel & McWilliams 1997). Ertel’s
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PV in figure 1 is defined (Ertel 1942) as

Q≡ [ω+ f ẑ] ·
(
∇b+ N̄2 ẑ

f N̄2

)
− 1, (2.9)

where ω≡∇× v is the vorticity vector as observed in the rotating frame. To provide
a better sense about the PV structure of the vortices studied here, Q(r, z) for a
Gaussian vortex with Ro= 0.2 and three values of Bu= 0.1, 1 and 2 are depicted in
figure 1(c–e), showing that the PV structure can significantly change with Bu (see
Morel & McWilliams (1997) for a discussion of potential vorticity of Gaussian
vortices). Our purpose for showing the PV of Gaussian vortices is to allow the reader
the ability to make comparisons of the vortex model with what is used in some other
stability studies such as Tsang & Dritschel (2015) who model the initial vortex with
uniform patches of PV.

Finally it should be noted that there is a restriction on the equilibrium of
anticyclones in the Gaussian model (2.2)–(2.4); there is no equilibrium for anticyclones
for Ro < −0.5. This is because (2.3) and (2.6) show that vφ does not have a real
solution for Ro < −0.5, as noted, for example, by McWilliams (1985) and Olson
(1991).

2.4. Eigenmodes
The symmetries of the governing equations in (2.1) linearized around the equilibrium
vortex (2.2)–(2.4) are presented in dimensionless form in § 5 in (5.10)–(5.14). These
equations and their boundary conditions show that the eigenfunctions are either
symmetric or antisymmetric with respect to the z = 0 horizontal plane and have an
m-fold azimuthal symmetry about the z-axis. We use the labels Sm or Am for each
eigenmode, to identify it as symmetric (or antisymmetric) with respect to the z = 0
horizontal plane and with m-fold symmetry.

The complex eigenvalues λ and eigenfunctions are of the form

eλt geig(r, z)eimφ
= eσ t geig(r, z)eim(φ−ct), (2.10)

where the eigenvector has three velocity components, a density component and a
pressure component:

geig(r, z)≡ [vr,eig, vφ,eig, vz,eig, ρeig, peig]. (2.11)

The three velocity components are with respect to cylindrical coordinates, where m is
the integer azimuthal wavenumber, σ is a real growth (or decay) rate and c is a real
azimuthal phase speed. By taking the complex conjugate of the linearized equation,
we can show that if λ is an eigenvalue with eigenfunction given by (2.11), then λ† is
also an eigenvalue with eigenfunction g†

eig(r, z)≡ [v†
r,eig, v

†
φ,eig, v

†
z,eig, ρ

†
eig, p†

eig], with m
replaced by −m, c unchanged and where the superscript † denotes complex conjugate.
Or in other words, the eigenvalues λ when plotted in the complex plane are symmetric
with respect to the real axis. Because the equations are non-dissipative, replacing t
with −t in the linearized equations shows that if λ≡ σ − imc is an eigenvalue with
eigenfunction given by (2.11), then λ′ ≡−σ − im′c′ is an eigenvalue that corresponds
to g′eig(r, z) ≡ [vr,eig, −vφ,eig, vz,eig, −ρeig, −peig], with m′ = −m and c′ = c. Or in
other words, the eigenvalues λ when plotted in the complex plane are symmetric with
respect to the imaginary axis and for each eigenfunction with a positive growth rate
there is one with a negative growth rate and vice versa. The flow can never be linearly
stable with all of its eigenmodes having decay rates. The flow can either be unstable
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or be neutrally stable with all of its eigenmodes on the imaginary axis with σ = 0.
For the Gaussian vortices, the two symmetries of the linearized equations combine
and therefore the eigenvalues appear as quartets of the form ±a ± ib, with all four
possible combinations of the signs, and where a and b are real functions of m and of
the parameters of the unperturbed vortex Ro, Bu and f /N̄. For Hamiltonian systems
(Ozorio de Almeida 1988), it can be shown that the quartet of eigenvalues is of a
more specialized form:

λ=±
√

A± iB, (2.12)

with all four possible combinations of the signs, and where A and B are real
functions of the control parameters of the system. For many non-dissipative flows,
e.g. unidirectional shears flows with vortex sheets and/or vortex layers made up of
piecewise-constant vorticity (Drazin & Reid 2004), it can be shown that the quartets of
the eigenvalues are of the form of (2.12). Consider a system with eigenvalue quartets
such as those in (2.12). When A > 0, the eigenvalues in the quartets are symmetric
about the real and imaginary axes and each quartet has two unstable and two stable
eigenmodes. If a control parameter changes such that A decreases, then eigenvalues
symmetrically approach the imaginary axis and collide when A= 0. For that parameter
value, there are two pairs of degenerate, neutrally stable eigenmodes with all four
eigenvalues on the imaginary axis. If the control parameter is further changed such
that A continues to decrease and becomes negative, then the eigenvalues are no longer
degenerate, but they remain on the imaginary axis and all four eigenmodes remain
neutrally stable, regardless of how negative A becomes. Although we cannot prove
that the eigenvalue quartets of the linear eigenmodes of the Gaussian vortex have the
form of (2.12), all of our numerical simulations are consistent with (2.12). (See § 3.)

Note that although we are studying the stability of axisymmetric vortices, we
solve (2.1) in the Cartesian coordinates rather than in the cylindrical coordinates. A
numerical solver in the Cartesian coordinates avoids the difficulties of handling the
singularity at the origin (r = 0), which requires using special polynomial basis
functions (Matsushima & Marcus 1995). However, our main reason for using
Cartesian coordinates is that future studies can include background shear flows,
so that the stability of vortices in planetary atmospheres and protoplanetary disks
can be examined, as discussed in the Introduction. To minimize the effect of the
square computational domain, we have used a circular sponge layer as described
in § 2.2. In order to find the eigenmodes with various classes of azimuthal (and
vertical) symmetry in the Cartesian coordinates, we use our initial-value solver as
an eigenvector/eigenvalue solver and additionally use a spatial symmetrizer (see
appendix C for details). Using the spatial symmetrizer, the eigenmodes can be
restricted to be symmetric or antisymmetric in the vertical direction, while in the
azimuthal direction we can enforce one of the following classes of symmetry: m
odd; m even not divisible by 4; and m even and divisible by 4. We use these
specific symmetry groups to apply the azimuthal symmetry directly in the Cartesian
coordinates, which greatly speeds up the convergence of the calculations, and also
avoids introducing additional errors due to transformation between Cartesian and
cylindrical coordinates (see appendix C).

3. Critical layers
Eigenmodes of unidirectional equilibrium flows, such as the Gaussian vortices

studied here, can have critical layers, i.e. singularities at locations where the azimuthal
phase speed c is equal to the azimuthal velocity vφ(r, z) of the unperturbed vortex
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(Maslowe 1986; Benilov 2003). (In stratified unidirectional flows, critical layers can
appear at other locations as well (Marcus et al. 2013, 2015).) Here we show examples
of eigenmodes with critical layers and discuss, for a few cases, how different modes
take over as the fastest-growing mode as Bu changes, which will be used later
to interpret the results of § 4. It should be noted that despite the peculiar nature
of critical layers, it is not difficult to accurately compute them using high-resolution
numerical simulations. For example, Nguyen et al. (2012) and Yim et al. (2016) have
simulated critical layers in 3-D QG and Boussinesq vortices, respectively. Recently, we
have numerically computed critical layers, with and without dissipation, in stratified,
rotating, unidirectional flows and found that with sufficient spatial resolution the
locations, widths and other analytically known properties of the critical layers can be
quantitatively reproduced (Marcus et al. 2013, 2015). In the results presented here,
the location of the critical layers and the phase speed of the eigenmode containing
the critical layer are insensitive to the numerical resolution and remain the same
when the resolution is increased by a factor of 4 by halving the domain size in each
direction to (15L) × (15L) × (15H) and increasing the Fourier modes from 2563 to
5123 (the figures showing the structure of the eigenmodes in this section are from
the higher resolution).

The singularity in the eigenmode occurs where the coefficient [vφ(r, z)/r − c −
iσ/m] in front of the highest-order derivative terms in the governing equations of
the eigenmode becomes zero. Unless the growth rate σ is zero and the eigenmode
is neutrally stable, the eigenmode is no longer formally singular. However, the
amplitudes of the eigenmodes remain large at locations where vφ(r, z)/r = c for
parameter values where σ > 0 and the mode is weakly growing. For parameter
values where the analytically computed eigenmode has σ = 0, but the eigenmode is
computed numerically with a modified initial-value code (as done here) with weak
hyperdissipation, the computed eigenmode has large amplitude at vφ(r, z)/r = c, and
the magnitude of the numerically computed growth rates σ are typically less than or
equal to 0.002 in inverse units of the vortex turnaround time τ ≡ 4π/ωc, where ωc is
the absolute value of the vertical vorticity at the centre of the vortex.

We argued in § 2.4 that as a parameter value, such as the Burger number, is changed
such that a growing/decaying pair of eigenmodes has its eigenvalues λ collide on
the imaginary axis, the eigenmodes become neutrally stable and degenerate. As the
parameter value further changes, the eigenvalues remain neutrally stable and their
phase speeds become distinct from each other. Here we demonstrate in detail that
this scenario of eigenvalue collision, in which the families of eigenmodes continue
after the collision rather than ceasing to exist due to the singularity of the critical
layer, is correct by illustrating the collision for three distinct families of eigenmodes
with critical layers. In particular, we show that as the Bu changes and the eigenmode
goes from unstable to neutrally stable, the family containing that eigenmode continues
to exist and remains neutrally stable as the Bu is further changed. We need these
three demonstrations to not only show that our numerical computations of eigenmodes
are accurate, but also to highlight the physics of the collisions.

Figure 2 shows the growth rate σ and phase speed c of the fastest-growing
eigenmode with S2 symmetry for Ro= 0.05 and 0 6 Bu 6 2.1. As Bu increases, the
growth rate in figure 2(a) changes from positive (unstable) to zero (neutrally stable)
at Bu' 0.823. Note that we have computed three neutrally stable eigenmodes in this
family. There can be multiple neutrally stable S2 eigenmodes for the same Ro, f /N̄
and Bu so it is necessary to show that the eigenvalues with Bu.0.823 and Bu&0.823
belong to eigenmodes in the same family. We do this in two ways. Figure 2(b) shows
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FIGURE 2. (a) Growth rates σ (in units of τ−1) of the eigenmodes with S2 symmetries
as functions of Bu for Ro= 0.05 and f /N̄ = 0.1. The lines connecting the symbols are to
‘guide the eye’. The eigenmodes with S2 symmetry are unstable in the range Bu . 0.823
(they are the fastest growing for 0.2 . Bu . 0.823). As Bu increases, the eigenmode
changes from unstable to neutrally stable at Bu' 0.823 (shown with the vertical broken
line), but the family of eigenmodes does not terminate there. (b) The phase speed c (in
units of τ−1) corresponding to the growth rates shown in (a). The lines connecting the
symbols are to guide the eye. The phase speed is continuous when it passes through
the vertical broken line, which is a necessary condition for the unstable and neutrally
stable eigenmodes to belong to the same family. Note that because our computation
uses a small hyperdissipation, the ‘neutral’ modes in (a) have a slight decay rate of
∼ 0.002τ−1; however, as the value of the hyperdissipation decreases (with a corresponding
increase in spatial resolution to prevent an accumulation of energy and enstrophy at the
smallest resolvable length scales), so does the decay rate, suggesting that a dissipationless
calculation would show that family of eigenmodes with Bu> 0.823 are truly neutral.

the phase speeds c for the eigenmodes illustrated in figure 2(a). According to (2.12),
a necessary condition that the eigenmodes belong to the same family is that there is
no discontinuity in c at the value of Bu where σ changes from positive to zero. (Note
that the slope of c can be discontinuous at the Bu where σ changes from positive
to zero.) Figure 2(b) shows that this condition is met. Figure 3 shows the vertical
vorticity of the eigenmodes whose eigenvalues are shown in figure 2 with Bu = 0.7
(where the eigenmode is unstable) and Bu = 0.9 (where the eigenmode is neutrally
stable). The eigenmodes clearly have similar radial structures and are therefore part
of the same family. The continuous, nearly circular curve (dark green, in colour) is
the locus in the r–z plane where vφ(r, z)/r = c and indicates the theoretical location
of the critical layer. The large vorticity that is nearly coincident with the continuous
curve is the critical layer.

Figures 4 and 5 show the growth rates, phase speeds and the vertical vorticity of
another family of eigenmodes with critical layers for Ro = 0.05 and 0 6 Bu 6 2.1.
These eigenmodes have A1 symmetry and are the fastest-growing eigenmodes when
Bu . 0.2. As Bu increases, the growth rate changes from positive (unstable) to zero
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FIGURE 3. (Colour online) Vertical vorticity in the (r–z) plane of two of the eigenmodes
shown in figure 2, with medium shade being zero (cyan, in colour), light shade being the
most cyclonic (yellow, in colour) and dark shade the most anticyclonic (blue, in colour).
The centre of each panel corresponds to the centre of the unperturbed Gaussian vortex.
The azimuthal angle of each panel was chosen so that the critical layer is prominent. The
theoretical location of each critical layer is indicated by the continuous, nearly circular
curve (dark green, in colour), which is where the phase speed c is equal to the azimuthal
velocity of the unperturbed vortex. Both eigenmodes have S2 symmetry. (a) For the
unstable eigenmode at Bu= 0.7. (b) For the neutrally stable eigenmode at Bu= 0.9. The
similarity of the radial structure of the unstable and neutrally stable eigenmodes indicate
that they are part of the same family and that the family does not terminate when the
growth rate changes from positive to zero.

(neutrally stable) at Bu' 0.177. The continuity of c and the similarity of the vorticity
distributions for the unstable and neutrally stable eigenmodes indicate that the unstable
and neutrally stable eigenmodes belong to the same family and that the family does
not end abruptly at the value of Bu where the eigenmodes pass from unstable to
neutrally stable.

Figures 6 and 7 also show the growth rates and phase speeds and the vertical
vorticity of a different family of eigenmodes with critical layers with A1 symmetry for
Ro= 0.05 and 06Bu6 2.1. For this family as Bu decreases, the growth rate changes
from positive (unstable) to zero (neutrally stable) at Bu' 1.02. Again, the continuity
of c and the similarity of the vorticity distributions for the unstable and neutrally
stable eigenmodes indicate that the unstable and neutrally stable eigenmodes belong
to the same family and that the family does not end abruptly at the value of Bu where
the eigenmodes pass from unstable to neutrally stable. Note that although the set of
figures 4 and 5 and the set of figures 6 and 7 both illustrate A1 eigenmodes, they
are different families of eigenmodes. The distinction is easily seen because the radial
structures of the eigenmodes differ and because the phase speeds differ. We have
illustrated these two different families of A1 eigenmodes to emphasize the fact that
we can easily determine when two families of eigenmodes are distinct and when they
are not. These results demonstrate that the unstable and neutrally stable eigenmodes
in figure 2 (or in figure 4 or in figure 6) are part of the same family and confirm
that when a pair of eigenvalues of eigenmodes of the vortices studied here collide on
the imaginary axis, the families of eigenmodes do not terminate. This finding will be
used later to interpret the results of § 4 (specifically, figure 9).
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FIGURE 4. As in figure 2 but for the family of A1 eigenmodes that are the fastest growing
for Ro = 0.05, f /N̄ = 0.1 and in the range Bu . 0.2. Triangles indicate the numerically
computed values of σ and c. The eigenmode goes from unstable to neutrally stable at
Bu' 0.177, indicated by the vertical broken line.
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FIGURE 5. (Colour online) As in figure 3 but for two of the eigenmodes shown in figure 4
with A1 symmetry. (a) For the unstable eigenmode at Bu = 0.15. (b) For the neutrally
stable eigenmode at Bu= 0.25.

Finally, it should be mentioned that for the cases examined here (Ro= 0.05, 0.1 .
Bu . 1.6), the peripheral location of critical layers is found to be generic (figures 3,
5, 7 and 14f ), which is consistent with the QG analysis of Nguyen et al. (2012).

4. Parameter map of stability
Here, we explore the stability and linear growth rates of Gaussian vortices as

functions of Ro and Bu for f /N̄ = 0.1. Like many other studies, for most cases we
have used f /N̄ = 0.1, rather than f /N̄ = 0.01 (which is a better representative of the
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FIGURE 6. As in figure 2 but for the family of A1 eigenmodes that are the fastest growing
for Ro = 0.05, f /N̄ = 0.1, and Bu & 1. Solid circles indicate the numerically computed
values of σ and c. The eigenmode goes from neutrally stable to unstable at Bu ' 1.02
indicated by the vertical broken line. Note that the families illustrated here and in figure 4
both have A1 symmetry, but they are different families.
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FIGURE 7. (Colour online) As in figure 3 but for two of the eigenmodes shown in figure 6
with A1 symmetry. (a) For the unstable eigenmode at Bu=1.2. (b) For the neutrally stable
eigenmode at Bu=0.9. Note that the eigenmodes illustrated here and in figure 5 both have
A1 symmetry, but they are different eigenmodes.

mid-latitude oceans, see Chelton, deSzoeke & Schlax 1998; Lelong & Sundermeyer
2005), because small values of f /N̄ are computationally expensive to tackle (see,
e.g. Brunner-Suzuki et al. 2012; Tsang & Dritschel 2015). However in this paper,
we use the semi-analytic method of Barranco & Marcus (2006), which allows us to
compute flows efficiently for a wide range of f /N̄, including the more physically
relevant value of 0.01. Some cases are repeated with f /N̄ = 0.01 and discussed in § 5.
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The results presented in this section are all obtained using the computational domain
of (30L)× (30L)× (30H) and resolution of 2563.

For each of the vortices we examined, we computed the eigenvalues and
eigenvectors (as given by (2.10)) of the fastest-growing eigenmode and also for
the fastest-growing eigenmodes of each of the six symmetry classes that could be
computed by the simultaneous application of the spatial symmetrizer in z (which
forced the eigenmode to be symmetric or antisymmetric in z) and the azimuthal
symmetrizer (which forced the eigenmode to have an odd azimuthal wavenumber
m, or to have an even m that was not divisible by 4, or to have an even m that
was divisible by 4). For some cases, the fastest-growing eigenmodes were also
computed without a spatial symmetrizer, which were found to be identical (up to
three significant digits) to the fastest-growing eigenmode of the six eigenmodes that
were computed with one of the enforced symmetries.

The results are compared and contrasted with the most relevant published results
obtained from analysing the QG, shallow-water, and full Boussinesq equations in § 4.2.

4.1. Spatial symmetries and growth rates of the eigenmodes
The parameter map of stability in the Ro–Bu space is shown in figure 8(a). Gaussian
anticyclones do not exist with Ro<−0.5 (see § 2.3). The region to the lower left of
the thick dashed black curve corresponds to equilibrium Gaussian vortices for which
N2

c < 0 (or Bu<−Ro(1+ Ro) according to (2.7)). These vortices are not unphysical,
but near their cores they have heavy fluid above light fluid (i.e. ∂ρ/∂z>0 at the vortex
centre).

As shown in figure 8(a), the most unstable eigenmodes (i.e. those with the largest
growth rates) of the vortices generally have either S2 or A1 symmetries. A few points
in the figure correspond to vortices for which the fastest-growing eigenmode is A2, A3
or A4. We found that no vortex had a fastest-growing eigenmode with a symmetry
different from those just listed. To our surprise, only four out of the 130 vortices
that we examined were neutrally stable. All the neutrally stable vortices were cyclones
with 0.02.Ro. 0.05 and 0.8.Bu. 1. The neutrally stable eigenmodes are denoted
in figure 8(a) as solid circles in the region circumscribed by a small rectangle. The
rectangle is to ‘guide the eye’ and is used to denote the approximate boundary of
the region of neutral stability. Computing the actual boundary between the regions
where vortices are all neutrally stable and where they are unstable would be expensive
and rather pointless given how small the neutrally stable region is. Anticyclones have
linear growth rates that are slow and would not destroy a vortex in less than 50 vortex
turnaround times if 0.5 . Bu . 1.3. For nearly geostrophic cyclones with |Ro|< 0.05,
linear growth rates are slow and would not destroy a vortex in less than 50 vortex
turnaround times if 0.7.Bu. 1.2. As Ro increases, the growth rates of large diameter
cyclones (i.e. with Bu . 1.05 or L & 0.98Lr) becomes faster.

Considering the smallness of the region of neutral stability, clearly, linear stability
cannot be used to explain the differences between the numbers of observed cyclones
and anticyclones in the oceans or in planetary atmospheres. On the other hand, ocean
vortices can survive for more than 50 of their own turnaround times, τ . So, one
plausible explanation of the cyclonic/anticyclonic asymmetry in the frequency of
observation of mesoscale oceanic eddies and of planetary vortices might depend on
the differences of the growth rates of the linear instabilities, rather than just the fact
that some vortices are not linearly unstable and others are. For example, if there are
physical processes (such as turbulence, interactions with other vortices or currents
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FIGURE 8. (Colour online) Parameter map of the stability of Gaussian vortices in the
Ro–Bu space. No equilibrium Gaussian vortices exist with Ro < −0.5. The thick black
dashed line in the lower left corner indicates the locus over which N2

c = 0, i.e. Bu =
−Ro(1+ Ro), with N2

c < 0 for vortices with smaller Ro or Bu. Panel (a): the thick solid
(blue, in colour) and thick dotted (red, in colour) lines indicate the iso-surface where
σ of the fastest-growing eigenmode is 0.02τ−1. The region bounded by this iso-surface,
the thick black dashed curve (but see the caveat in the text describing figure 10) and
the bottom of the figure has σ < 0.02τ−1 (the iso-contour is to guide the eye and
is approximated by interpolating among the growth rates calculated at the locations of
the discrete symbols). The symbols denote the spatial symmetry of the fastest-growing
eigenmode, with diamonds (blue, in colour) as S2, solid triangles (red, in colour) as A1,
squares (green, in colour) as A2, hollow triangles as A3 and hollow circles as A4. Black
solid circles correspond to vortices for which the most unstable eigenmodes have growth
rates slower than 0.02τ−1. Panel (b): four iso-contours (approximated as in (a)) of growth
rate σ of the fastest-growing eigenmode. Each contour consists of one solid curve (blue,
in colour) and one or two dotted curves (red, in colour). The fastest-growing eigenmodes
along the dotted curves (red, in colour) have A1 symmetry and along the solid curves
(blue, in colour) have S2 symmetry. The small rectangular box near Bu = 1 is to guide
the eye and shows the approximate, very small, region where all of the eigenmodes of the
cyclones are neutrally stable. The σ and the symmetries of the most unstable eigenmodes
with σ > 0.02τ−1 for vortices with N2

c > 0 in (a) are given in appendix D.
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or boundaries) that are likely to destroy a vortex after 50τ , which is more than
∼1/2 year for ocean Meddies (McWilliams 1985; Armi et al. 1989; Hebert, Oakey
& Ruddick 1990; Pingree & Le Cann 1993; D’Asaro, Walker & Baker 1994; Prater
& Sanford 1994; Paillet et al. 2002), then a vortex need not be neutrally stable to
be observed, it needs only have growth rates less than ∼1/50τ−1. So, it is plausible
that the asymmetry between the numbers of observed cyclones and anticyclones
depends upon the relative amount of area in Ro–Bu parameter space for which
the fastest-growing eigenmodes grow slower than ∼1/50τ−1, or some other critical
growth rate. For Gaussian vortices, the region in Ro–Bu parameter space where the
growth rate of the fastest-growing eigenmode is less than 1/50τ−1 (i.e. the ‘slow
growth region’ for linear instability) is the region bounded above by the solid (blue,
in colour) and dotted (red, in colour) curves in figure 8(a) and to the lower left by
the thick dashed curve. Along the solid curve (blue, in colour), the fastest-growing
eigenmode has S2 symmetry, whereas along the dotted curve (red, in colour) it
is A1. The solid and dotted curves are drawn to guide the eye, and the vortices
corresponding to the black solid circles have σ < 1/50τ−1. In general, for large
Bu, the fastest-growing eigenmodes have A1 symmetry, while for smaller Bu, they
have S2 symmetry. However, for cyclones with Bu. 0.4, some of the fastest-growing
eigenmodes also have A1 symmetry, or even A2, A3 or A4 symmetry, and the growth
rates are often faster than 1τ−1. There are two regions in the Ro–Bu parameter space
where the fastest-growing eigenmodes of the cyclones have A1 symmetry. In the
region with higher Bu, the growth rate of the fastest-growing modes is smaller than
that in the lower Bu region, and, as discussed previously and elaborated on in § 6,
the radial structures of the fastest-growing A1 eigenmodes in the large and small Bu
regions differ as well.

Of course, our choice of 50τ to define the ‘slow growth region’ for linear instability
is arbitrary, so figure 8(b) shows how the slow growth region changes when we change
our choice from 50τ to 20τ , 10τ or 6.67τ . That is, the two sets of (solid/broken)
curves are iso-surfaces in Ro–Bu parameter space where σ is 0.02, 0.05, 0.1 and 0.15
in units of τ−1. For the iso-surface for the growth rate of 0.15τ−1 in figure 8(b), the
fastest-growing eigenmode has S2 symmetry for 0.5.Bu. 1.8, otherwise the fastest-
growing eigenmode has A1 symmetry. Note that the iso-surfaces for the growth rates
of 0.10τ−1 and 0.15τ−1 are very close to each other for Bu. 0.3. Most of the fastest-
growing eigenmodes in the Ro–Bu parameter space shown in figure 8 have σ < 0.2τ−1.
However, cyclones in the upper left corner of figure 8 can have σ of order one τ−1.
As shown below, anticyclones to the lower left of the thick dashed curve in the lower
left side of figure 8 (with N2

c < 0) can have much larger σ .
The growth rates of the three fastest-growing eigenmodes for Ro= 0.05 as functions

of Bu are plotted in figure 9(a) (combining figures 2, 4 and 6) showing that the
fastest-growing eigenmode is A1 for Bu . 0.2; is S2 for 0.2 . Bu . 0.8; and is A1
for 1 . Bu . 2.1. However, for 0.8 . Bu . 1, the eigenmodes are all neutrally stable.
This region of neutral stability is consistent with the neutrally stable region shown
in figure 8. The change in the spatial symmetry from A1 to S2 back to A1 of the
fastest-growing eigenmode as Bu increases was discussed in § 3 and it was shown
that (i) the family of eigenmodes continues to exist even after the eigenmodes become
neutrally stable and (ii) the A1 modes at small and large Bu belong to two different
families of eigenmodes. Similar changes in the symmetries of the most unstable mode
are observed at Ro = 0.2 (figure 9b); however, at Ro = 0.2 there is not a region
where the vortex is neutrally stable to all eigenmodes. Similar to Ro= 0.05, the two
families of A1 eigenmodes shown in figure 9(b) with triangles and with filled circles
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FIGURE 9. Growth rates σ (in units of τ−1) of the three fastest-growing modes as
functions of Bu for fixed Ro. f /N̄=0.1. Triangles, filled circles and diamonds, respectively,
indicate the fastest-growing eigenmodes at low Bu (which have A1 symmetry), the
fastest-growing eigenmodes at high Bu (which also have A1 symmetry) and the
fastest-growing eigenmodes for intermediate Bu (which have S2 symmetry). The three
lines connecting the three sets of symbols are to guide the eye to show the three
families of eigenmodes. (a) Ro = 0.05; in this case as Bu increases, the fastest-growing
mode changes from A1 to S2; then all modes are linearly neutrally stable; then the
fastest-growing mode is A1. (b) Ro= 0.2; the fastest-growing mode changes from A1 to
S2 and again to A1 as Bu increases.

are distinct families with different radial structures. How these results, particularly at
the small Ro of 0.05, compare with those obtained from analysing the QG equations
is discussed in § 4.2.

The growth rates for the region with statically unstable vortex cores, i.e. with N2
c <

0, are shown in figure 10. Eigenmodes for this region have A4 symmetry and the
growth rates can be as large as ∼ 100τ−1. The σ as a function of Bu (for fixed Ro),
and as a function of Ro (for fixed Bu) for vortices with N2

c < 0 are shown in figures
11(a) and 11(b), respectively. In each of the eight panels, the value of the horizontal
coordinate axis on the right-hand side of the panel corresponds to a vortex with N2

c =0
(i.e. a point on the thick dashed curve in figure 8 or in the broken curve in figure 10).
The figure shows that σ increases rapidly as a function of distance from the N2

c = 0
boundary. Due to this rapid growth in σ , for all practical purposes we can consider
the thick dashed line at N2

c = 0 to be the left boundary of the region in figure 8(b) in
Ro–Bu for which σ < 0.02τ−1, and also the boundary for the region 0.02τ−1 6 σ <
0.05τ−1, and for the region 0.05τ−1 6 σ < 0.10τ−1.

4.2. Comparison with previous studies
As discussed in § 1, this paper extends the analyses of previous studies by using the
full 3-D non-hydrostatic Boussinesq equations and by employing the 3-D Gaussian
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FIGURE 10. (Colour online) Blow up of the lower left corner of figure 8(a), showing
details of the eigenvalues in the region where the Gaussian vortices have N2

c < 0. The axes
of the figure, line styles and symbols have the same meaning as they do in figure 8(a).
In the lower left region, below the broken line, numbers rather than symbols are used to
indicate where in parameter space we have carried out linear stability calculations. The
numbers are the values σ (in units of τ−1) of the fastest-growing eigenmode (which in
all cases has an A4 symmetry).

vortex model, which has continuous velocity and density (and PV) fields and is
initially in exact equilibrium. The latter is necessary for a rigorous linear stability
analysis. A comparison of our results with those of many previous studies is not
straightforward because various different vortex models and flow models have been
used. Below we compare our parameter map of stability with the results of the most
relevant study in the QG limit (Nguyen et al. 2012) and with the results of several
relevant studies using multilayer models. We also discuss the results of Yim et al.
(2016), who used the full Boussinesq equations but studied a different family of
vortices.

In the limit of vanishing Ro, the most relevant study to ours is that of Nguyen
et al. (2012), who numerically calculated the unstable modes of a Gaussian vortex
using the QG equations. They found that the fastest-growing mode changes from S2
to A1 around Bu= 1, which along with the general dependence of the growth rate of
the fastest-growing mode on Bu in their figure 1(a) agrees overall with the results of
current study (see figure 9a which is for Ro= 0.05). However, they also found that for
Bu as small as 0.05, modes with higher m dominate. In our results, for anticyclones,
as Bu decreases, the most unstable mode changes from S2 to A4 once the vortex
becomes statically unstable (this instability is not considered in the QG framework
used by Nguyen et al. (2012)). For cyclones, as Bu decreases, the most unstable mode
changes from S2 to A1 for small Ro and to A2 or A3 for moderate Ro (see figure 8).

There are a number of studies which have used the shallow-water equations with the
Gaussian vortex model and are relevant to current work. Consistent with the results of
our analysis, these studies find that anticyclones become more stable as the absolute
value of the Rossby number increases, whereas for cyclones the growth rates decrease
with decreasing the Rossby number (Stegner & Dritschel 2000; Baey & Carton 2002;
Benilov & Flanagan 2008). (In this section note that our results are only for vortices
with stably stratified interiors.)

How the growth rates in these studies vary with the Burger number, however,
shows a strong dependence on the vertical structure of the vortex and the background
flow. Stegner & Dritschel (2000) studied the stability of isolated Gaussian vortices
using a 1–1/2 layer model and found that for vortices with small Rossby numbers,



www.manaraa.com

Linear stability of 3-D baroclinic vortices 117

0.200 0.225 0.240
0

10

20
(a)

(b)

0.17 0.19 0.21
0

20

0.12 0.14 0.16
0

50

Bu
0.070 0.075 0.090

0

50

Bu

−0.440 −0.400 −0.342
0

5

10

–0.330 –0.300 –0.255
0

10

20

−0.230 −0.200 −0.168
0

20

40

Ro
−0.120 −0.100 −0.082

0

40

80

Ro

FIGURE 11. Growth rates (in units of τ−1) for the most unstable eigenmode of vortices
with N2

c < 0 for fixed Ro and Bu. f /N̄ = 0.1. For all vortices examined in this region, the
fastest-growing eigenmode has A4 symmetry; (a) σ as a function of Bu for Ro=−0.4,
−0.3, −0.2 and −0.1; (b) σ as a function of Ro for Bu= 0.225, 0.19, 0.14 and 0.075.
In each panel, the value of the horizontal coordinate axis on the right side of the panel
corresponds to a vortex with N2

c = 0. The dotted lines are to guide the eye.

the growth rate decreases with decreasing the Burger number. This is consistent with
our results only for Bu & 1. Benilov & Flanagan (2008) used a two-layer model to
examine the stability of the ‘compensated’ (i.e. v = 0 in the bottom layer) Gaussian
vortices, and also Gaussian vortices with uniform PV in the lower layer. They found
that compensated vortices are neutrally stable for intermediate Burger numbers, while
vortices with uniform PV in the lower layer are neutrally stable for Burger numbers
smaller than a critical value of order 1. Baey & Carton (2002) studied two-layer
Gaussian vortices and found, in contrast to the previous results and those of ours,
that the growth rate decreases with Burger number for both cyclones and anticyclones
and the eigenmodes are stable for Burger numbers larger than a critical value. It is
apparent that identifying a unique stability behaviour with Burger number in these
studies is difficult and the behaviour is highly dependent on the vertical structure of
the flow/vortex. An example of such dependence is given by Sutyrin (2015), who
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examined two- and three-layer compensated shallow-water vortices and showed that
the addition of a third middle layer with uniform PV weakens the coupling between
the upper and lower layers and enhances the stability of vortices. Considering these
results, comparing the Burger number dependence of the stability behaviour of 3-D
vortices in continuously stratified Boussinesq flows and vortices in shallow water and
layer models is not particularly useful.

Only a few studies have used the full Boussinesq equations, and even those have
focused on very different vortex models such as barotropic Taylor columns (Smyth
& McWilliams 1998), evolving (out-of-equilibrium) 3-D vortices interacting with
large-scale internal waves (Brunner-Suzuki et al. 2012), out-of-equilibrium, ellipsoidal
3-D vortices with discontinuous PV profiles (Tsang & Dritschel 2015) and 3-D
equilibrium vortices with Gaussian angular velocity (Yim et al. 2016). Here we focus
on the latter, because the main difference between our analysis and that of Yim et al.
(2016) is in the vortex model: Gaussian pressure anomaly in the current study versus
their Gaussian angular velocity (also note that the flow in their study is not inviscid).
Such comparison provides some understanding of how the stability properties depend
on the vortex profile.

Yim et al. (2016) conducted a linear stability analysis of 3-D equilibrium vortices
with Gaussian angular velocity in unbounded, rotating, stratified flows for a wide
range of Rossby numbers, |Ro| 6 20. Here we only focus on their results for
|Ro|60.5 and inviscid and non-diffusive flows, which are relevant to the present study.
Consistent with our results, for Bu& 1, they found A1 as the most unstable mode for
both cyclones and anticyclones (their figure 39d and f ), which they attributed to the
instability mechanism of Gent & McWilliams (1986) (this is also consistent with the
results of Smyth & McWilliams (1998) for Taylor columns). For Bu . 1, Yim et al.
(2016) found anticyclones neutrally stable for 0.5 . Bu . 1 (while we found them
weakly unstable), and they found S2 as the most unstable mode for anticyclones
between the statically unstable region and Bu ∼ 0.4–0.5 (depending on Ro), which
is consistent with our results. For cyclones with Bu . 1, Yim et al. (2016) found a
neutrally stable region between 0.5.Bu. 1 (variable with Ro), which is much larger
than (and encompasses) the neutrally stable region we found; they also found that
as Bu decreases from one, modes with m= 2 become the most unstable ones before
modes with m = 1 also becoming unstable at lower Bu, which is overall consistent
with our results. At Bu as low as 0.3, the family of vortices studied by Yim et al.
(2016) can have statically unstable cyclones, while cyclones in the family of vortices
we studied are always statically stable. The comparison of the results of the current
study and those of Yim et al. (2016), as summarized above, suggests that for these
two vortex families, while the linear stability properties are not sensitive to the vortex
profile for Bu & 1, the stability properties strongly depend on the vortex profile for
Bu . 1. Whether this behaviour is generic or not requires further studies with other
vortex families.

5. Effect of f /N̄ on linear stability

Despite the fact that f /N̄ is of order 0.01 in the mid-latitude oceans (Chelton et al.
1998; Sundermeyer & Lelong 2005), f /N̄ ∼ 0.1 is commonly used in studies of the
oceanic vortices to reduce the computational cost; small values of f /N̄ in explicit
codes makes the equations of motion numerically ‘stiff’, which means they must be
computed with small time steps. In this paper calculations are done with f /N̄= 0.1 for
the purpose of sweeping a large region of the Ro–Bu parameter space and comparing
our results with those of others who have used this value.
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f /N̄ = 0.1 f /N̄ = 0.01
Ro Bu Symmetry σ Symmetry σ

+0.45 0.3 A3 1.5 A3 1.5
+0.4 1.2 S2 0.14 S2 0.14
+0.4 1.6 A1 0.13 A1 0.13
+0.2 0.15 A2 1.1 A2 1.1
+0.2 1.0 S2 0.058 S2 0.058
+0.2 2.0 A1 0.097 A1 0.098
+0.05 1.4 A1 0.040 A1 0.039
+0.02 0.5 S2 0.029 S2 0.029
−0.02 1.4 A1 0.028 A1 0.028
−0.18 0.15 S2 0.024 S2 0.023
−0.2 0.45 — <0.02 — <0.02
−0.2 2.0 A1 0.042 A1 0.043
−0.3 1.6 — <0.02 — <0.02
−0.4 1.72 — <0.02 — <0.02
−0.4 1.8 A1 0.021 A1 0.021

TABLE 1. Comparison of the linear growth rates (in units of τ−1) and symmetries of the
most unstable eigenmode of selected Gaussian vortices in the Ro–Bu space for f /N̄ = 0.1
and f /N̄ = 0.01.

Several other studies (Smyth & McWilliams 1998; Sundermeyer & Lelong 2005;
Brunner-Suzuki et al. 2012; Dritschel & Mckiver 2015; Tsang & Dritschel 2015) have
shown numerically that the stability properties and some aspects of the dynamics of
vortices in rotating, stratified flows are not very sensitive to the specific value of
f /N̄ as long as this value is small. Here, we show numerically that the eigenvectors
and eigenvalues of Gaussian vortices (with N2

c > 0), when properly scaled, are nearly
independent of f /N̄ for small f /N̄. Furthermore, by properly non-dimensionalizing the
linearized equations of motion, we explain the insensitivity of the eigenvalues and
eigenvector structures of the fastest-growing modes to the value of f /N̄.

Exploiting our semi-analytic method that enables us to accurately and efficiently
deal with large f1t and N̄1t, we have repeated over 40 of the simulations with f /N̄=
0.01. Table 1 shows the linear growth rate and the spatial symmetry of the fastest-
growing eigenmode of several Gaussian vortices for f /N̄ = 0.1 and f /N̄ = 0.01. The
symmetries are the same in all cases, as are the growth rates (in units of τ−1) within
4 %. Figure 12 shows examples of the most unstable eigenvectors (with dimension in
z scaled by H and dimensions of r, x and y scaled by L). The eigenmodes are nearly
indistinguishable for f /N̄ = 0.1 and f /N̄ = 0.01.

The insensitivity to f /N̄ is easily explained by non-dimensionalizing the equations
of motion (2.1) with 4π/ωc≡ τ as the unit of time, L as the unit of horizontal length,
H as the unit of vertical length, L/τ as the unit of horizontal velocity, H/τ as the
unit of vertical velocity, ρofL2/τ as the unit of pressure, ρo as the unit of density
and fL2/(Hτ) as the unit of buoyancy. In the following equations, asterisk superscripts
indicate the non-dimensionalized quantity or operator(

Ro
2π

)[
∂v∗r

∂t∗
+ v∗r

∂v∗r

∂r∗
+
v∗φ

r∗
∂v∗r

∂φ
+ v∗z

∂v∗r

∂z∗
−
v∗2
φ

r∗

]
=−

∂p∗

∂r∗
+ v∗φ, (5.1)
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v∗r

r∗
+
∂v∗r

∂r∗
+

1
r∗
∂v∗φ

∂φ
+
∂v∗z

∂z∗
= 0. (5.5)

Only (5.3) depends on f /N̄. For f /N̄ 6 0.1 and for Burger numbers of order unity
or less, the left-hand side of (5.3) is of order 10−3, whereas the two terms on the
right-hand side are both of order unity if we have chosen ‘proper’ units of length, time
and mass in our non-dimensionalization such that the dimensionless quantities denoted
with asterisk superscripts and their derivatives with respect to the dimensionless length
and time inside the square brackets are of order unity or less. Thus those two terms
nearly cancel each other, or

∂p∗

∂z∗
= b∗ +O(10−3). (5.6)

So, hydrostatic equilibrium is enforced to one part in a thousand. Thus, replacing
the dynamic equation (5.3) with the kinematic equation (5.6) is a very good
approximation, and with the replacement, the equations of motion are formally
independent of f /N̄. However, the argument above is not particularly useful because
there is no a priori way of knowing that we chose ‘proper’ units, and, in fact, for
many types of waves, with this choice of units, the dimensionless expressions inside
the square brackets are much greater than unity, and the waves are not in hydrostatic
balance and the value of f /N̄ is important.

However, with the choice of units above, the dimensionless form of our initial
Gaussian equilibrium vortices is

p̂∗ = (−π)(1+ Ro)χ∗(r∗, z∗), (5.7)

v̂∗φ =
( π

Ro

)
(r∗)

(
−1+

√
1+ 4Ro(1+ Ro)χ∗(r∗, z∗)

)
, v̂∗r = v̂

∗

z = 0, (5.8)

b̂∗ = (2π)(1+ Ro)z∗χ∗(r∗, z∗), (5.9)

where χ∗≡ exp [−(r∗)2 − (z∗)2]. Note that the vortices depend on Ro, but not on f /N̄
or Bu. Also note that as Ro→ 0, the equilibrium velocity v̂∗φ → 2πr∗χ∗(r∗, z∗) and
remains of order unity or less. The equilibrium p∗ and b∗ are also of order unity or
less for |Ro| of order unity or less.

The non-dimensional equations linearized around the non-dimensional Gaussian
vortex are (after dropping the asterisk superscripts and writing v = v̂ + ṽ, p= p̂+ p̃,
and b= b̂+ b̃, where tilde denotes the linear eigenmode)(

Ro
2π

) [
∂ṽr
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(
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)
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(
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FIGURE 12. (Colour online) Vertical vorticity of eigenmodes normalized such that the
maximum value of |ω| is 1. The eigenmodes are virtually indistinguishable for f /N̄ = 0.1
and f /N̄ = 0.01. The four rows from top to bottom correspond to the first four rows in
table 1. The broken lines denote the boundaries of the core and shield of the unperturbed
Gaussian vortex. Panels (a,b,e, f,i,j,m,n) are for f /N̄=0.1 and (c,d,g,h,k,l,o,p) are for f /N̄=
0.01. Panels (a,c,e,g,i,k,m,o) show the eigenmodes in the x–y plane for a fixed z. For the
z-symmetric eigenmode in the second row, this fixed value is z= 0. For the antisymmetric
eigenmodes in rows 1, 3 and 4, the fixed value of z is the positive value of z at which |ω|
of the eigenmode obtains its maximum value. Panels (b,d, f,h,j,l,n,p) show the eigenmodes
in the r–z plane for fixed azimuthal angle φ. In all cases, φ is chosen so that it is the
angle at which ω of the eigenmode obtains its maximum value.
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ṽr +

(
∂ b̂
∂z

)
ṽz
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For the fastest-growing eigenmodes of vortices with N2
c > 0, we have numerically

computed the dimensionless values of the quantities inside the square brackets and
found them to be of order unity or less for all of the eigenmodes represented in
figure 8. This calculation shows that for vortices whose interior is statically stable,
the fastest-growing eigenmodes are in vertical hydrostatic balance and therefore
explains why the non-dimensionalized eigenvalues and eigenmodes are insensitive to
the value of f /N̄ for f /N̄ . 0.1. It should be emphasized that we could not assume a
priori that the fastest-growing eigenmodes of our vortices are in hydrostatic balance.
Here we have numerically tested and verified the validity of this assumption. It is
worth mentioning that non-hydrostatic effects can be important in the dynamics and
evolution of some geophysical and astrophysical vortices; for example, our previous
calculations of vortices (Marcus & Hassanzadeh 2014), especially the longevity of
the Great Red Spot (GRS) of Jupiter (and we remind the reader that longevity of
vortices was the motivation of the study), showed that small departures from vertical
hydrostatic equilibrium caused large changes to the lifetime of the GRS (albeit, due
to nonlinear effects).

Finally, it is not surprising that for vortices with statically unstable interiors (N2
c <0),

the terms in the square brackets are large and therefore the most unstable eigenmodes
are not in hydrostatic balance. We have not carried out further eigenmode calculations
with f /N̄ = 0.01 in this region because they are computationally very expensive.

6. Radial and vertical structure of the unstable eigenmodes
In this section we investigate the radial distribution of vorticity in the fastest-

growing eigenmodes. The spatial distribution of these eigenmodes can be characterized
quantitatively by determining the fractional amounts of its vertical enstrophy that are
within the Gaussian vortex’s core Score and within its shield Sshield, where we use the
definitions of core and shield given in appendix B:

Score ≡

∫
core
|ωeig|

2 d3x∫
|ωeig|

2 d3x
, (6.1)

Sshield ≡

∫
shield
|ωeig|

2 d3x∫
|ωeig|

2 d3x
, (6.2)

where ωeig is the vertical vorticity of the eigenmode, the integrals in the numerators
of (6.1) and (6.2) are over the core and shield respectively of the unperturbed vortex
and where the integrals in the denominators are taken over the entire computational
domain. Not surprisingly, Score + Sshield > 0.95, meaning that eigenmodes do not
effectively extend radially beyond the shield of the unperturbed vortex. Figures 13
and 14 show that the radial structure of the fastest-growing mode depends in a simple
way on its vertical and azimuthal symmetry. Figure 13(a) is a simplified version of
figure 8(a) and divides the Ro–Bu space into five regions. The two unlabelled
regions correspond to the region with N2

c < 0, and to the region of slow growth with
σ 6 0.02τ−1.

The three regions labelled A1, S2 and A, correspond accordingly to the vertical–
azimuthal symmetry of the fastest-growing eigenmodes with the region labelled A
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FIGURE 13. Panel (a) shows a simplification of the parameter map in figure 8(a). The
fastest-growing eigenmodes in the region labelled A are antisymmetric in z and have
azimuthal wavenumbers of 1, 2, 3 or 4; otherwise, the fastest-growing eigenmodes have
the symmetry of the large labels. The small labels (a)–(f) indicate the locations in
parameter space of the vortices whose fastest-growing eigenmodes are plotted in figure 14.
Panel (b) shows a blow up of the S2 region in panel (a). The thin solid curves are the
iso-contours of the enstrophy Sshield of the vertical vorticity of the eigenmode in the vortex
shield. The value of Sshield in the S2 region decreases from 0.95 to 0.55 with increasing
Bu. The approximate average value of Score in the A and A1 regions are 0.95 and 0.73,
respectively. In the lower left corner of panel (a) where N2

c < 0, Score ' 0.99.

having fastest-growing eigenmodes that are antisymmetric in z with an azimuthal
wavenumber m of 1, 2, 3 or 4. The fastest-growing eigenmodes in the A1 region
are always (that is, for the vortices illustrated in figure 8a) concentrated radially in
the core with 0.71 6 Score 6 0.75. The A1 eigenmode indicated by the label ( f ) in
figure 13 is shown in the two panels labelled ( f ) in figure 14, which clearly show the
radial concentration of the eigenmode in the core. The fastest-growing eigenmodes
in the A region of figure 13(a) are even more strongly concentrated in the core
and have Score > 0.87. The A1 eigenmode of the cyclone indicated by the label (e)
in figure 13 is shown in the two panels labelled (e) in figure 14, which show the
concentration in the core. In contrast, the fastest-growing eigenmodes in the S2 region
are either radially concentrated in the shield or are spread throughout the core and
shield. Figure 13(b) is a blow up of figure 13(a) and shows iso-contours of Sshield,



www.manaraa.com

124 M. Mahdinia, P. Hassanzadeh, P. S. Marcus and C.-H. Jiang

(a)

−2 0 2 4

−2 0 2 4

−2 0 2 4

−4

−2

0

2

4

−1.0

−0.5

0

0.5

1.0

−2 0 2 4

−2 0 2 4

−2 0 2 4

−2 0 2 4

−2 0 2 4

−2 0 2 4

−2 0 2 4

−2 0 2 4

−2 0 2 4

−4

−2

0

2

4

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

−0.5

0

0.5

1.0

−4

−2

0

2

4

−1.0

−0.5

0

0.5

1.0

−4

−2

0

2

4

−0.23
0
0.20
0.40
0.60
0.80
1.00

−1.0

−0.5

0

0.5

1.0

0
0.2
0.4
0.6
0.8
1.0

−4

−2

0

2

4

−1.0

−0.5

0

0.5

1.0

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

(b)

(c) (d)

(e) ( f )

FIGURE 14. (Colour online) Vertical vorticity ω of the eigenmodes of the Gaussian
vortices for which the locations in Ro–Bu space are indicated with letters in figure 13(a).
The vorticity (normalized as in figure 12) and boundaries of the shields and cores are
plotted as in figure 12. The left-hand side of each panel shows eigenmodes in the x–y
plane, and the right-hand side of each panel shows them in the r–z plane. Consistent
with figure 13, the A and A1 eigenmodes (e, f ) are mainly confined to the cores of the
unperturbed vortices. The S2 eigenmodes with low Bu (a,b) are mainly confined to the
shield. The S2 eigenmodes with higher Bu (c,d) are spread over the core and the shield.

which varies in the region of Ro–Bu space that we examined from 0.95 at low Bu
to 0.55 at high Bu. Thus, for low values of Bu, the fastest-growing S2 eigenmodes
are very concentrated in the shields, and as Bu increases, the radial structure spreads
into the core such that for the largest values of Bu that we examined, the eigenmode
is approximately equally spread between the shield and core. The radial dependence
on Bu of the S2 eigenmodes is illustrated in figure 14(a–d). The implications of the
spatial structure of the most unstable eigenmodes will be discussed in a subsequent
publication that is focused on the nonlinear evolution of these vortices and is outlined
in the Discussion.

7. Discussion and summary

We have studied the linear stability of 3-D axisymmetric Gaussian vortices as a
function of their Rossby number, Ro and Burger number, Bu, over the wide range
of values where long-lived geophysical and astrophysical vortices are often observed
(−0.5 < Ro < 0.5 and 0.02 < Bu < 2.3). For each (Ro, Bu), the growth rate, σ and
the eigenvector of the most unstable eigenmode have been calculated by numerically
solving the 3-D non-hydrostatic Boussinesq equations.

The results of the stability analysis are summarized in the Ro–Bu parameter map
(figure 8). These results show that neutrally stable (i.e. σ = 0) cyclones only exist
over a small region of the parameter space where Ro∼ 0.02–0.05 and Bu∼ 0.85–0.95;
we do not find any neutrally stable anticyclone. On the other hand, the most unstable
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eigenmodes of anticyclones generally have slower growth rates compared to those
of the cyclones. Over a large region of the Ro–Bu parameter space (mainly Ro < 0
and 0.5 . Bu . 1.3), the maximum growth rates of the anticyclones are smaller
than 50 turnaround time (τ ) of the vortex. For Bu & 1.3, the maximum growth rate
of anticyclones increases (decreases) with increasing Bu (|Ro|). In this region, the
eigenvector of the most unstable modes is antisymmetric with respect to the z = 0
plane and has m= 1 azimuthal wavenumber (denoted as A1 mode), and the vertical
vorticity (ω) of the most unstable modes is mainly confined to the core of the
initial (i.e. unperturbed) anticyclone (similar to figure 14f, but for an anticyclone).
Preliminarily investigation of the nonlinear evolution of these vortices shows that,
in addition to the growth rate, the structure of the most unstable mode is also
important in determining how the nonlinearly equilibrated vortex compares with the
initial vortex (nonlinear evolution will be addressed in a subsequent publication). For
Bu . 0.5, the maximum growth rate of anticyclones increases with decreasing Bu or
|Ro|. In this region, the eigenvector of the most unstable modes is symmetric with
respect to the z = 0 plane and has m = 2 azimuthal wavenumber (S2 mode). The
vertical vorticity of these modes is mainly confined to the shield or spread over the
core and the shield of the initial anticyclone depending on the Burger number (see
figure 14a–c). For anticyclones if Bu < −Ro(1 + Ro), the interior of the vortex is
statically unstable. The growth rates of the most unstable mode for these anticyclones
are much larger (by factors up to several thousand or more) compared to those of
the anticyclones outside this region (see figures 10 and 11).

For cyclones, the region of small growth rate (σ < 0.02τ−1) is much smaller and
confined to Ro < 0.1 and 0.5 . Bu . 1.3. For Bu & 1, the maximum growth rate of
cyclones increases with increasing Bu or Ro. As was the case for anticyclones with
large Bu, in this region the eigenvector of the most unstable modes is (generally) an
A1 mode, and the vertical vorticity of these modes is mainly confined to the core of
the initial cyclone (see figure 14f ). For Bu. 1, the maximum growth rate of cyclones
increases with decreasing Bu or increasing Ro. In this region, for moderate values
of Bu, the eigenvector of the most unstable modes is a S2 mode, and its vertical
vorticity is spread over the core and the shield of the initial cyclone (see figure 14d).
For smaller values of Bu, the eigenvector is antisymmetric with respect to the z= 0
plane and has m= 1, 2, 3 or 4, and its ω is confined to the core of the initial cyclone.
Further analysis shows that although the fastest-growing eigenmodes of cyclones are
A1 for both small and large values of Bu, the families of these eigenmodes are in fact
distinct and have different spatial structures (see figures 4–7 and 14).

The findings described above are compared and contrasted with the relevant
published work in § 4.2. In particular, in the QG limit, Nguyen et al. (2012) found
that the fastest-growing mode changes from S2 to A1 around Bu = 1, which along
with the general dependence of the growth rate of the most unstable mode on Bu
agrees with our results for small Ro. However, there are differences at the limit of
small Bu (. 0.05): the QG analysis showed the dominance of modes with higher m,
while our analysis using the non-hydrostatic Boussinesq equations shows anticyclones
to be statically unstable with A4 modes dominating and cyclones to be unstable with
A1 modes dominating at low Ro and A2 or A3 modes dominating at moderate Ro.
We have also investigated critical layers in the eigenmodes of unstable and neutrally
stable vortices (see § 3), and have found them at the periphery of the vortex core for
a wide range of Bu, in agreement with the QG analysis of Nguyen et al. (2012).

We have also examined how the vortex profile affects the stability properties by
comparing our results for the family of vortices with Gaussian pressure anomaly with
those of Yim et al. (2016) who studied the linear stability of a family of vortices
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with Gaussian angular velocity using non-hydrostatic Boussinesq equations. While for
Bu & 1 both families of vortices have most unstable modes with A1 symmetries, for
Bu . 1, there are notable similarities and differences: Yim et al. (2016) found that
both cyclones and anticyclones can become statically unstable at low Bu (while we
found that only for anticyclones); they found that anticyclones are neutrally stable for
moderate Burger numbers 0.5 . Bu . 1 (while we found them weakly unstable) and
are unstable with S2 modes dominating for smaller Bu (which is consistent with our
results); Yim et al. (2016) found similar stability properties for cyclones as reported
here although they found a much larger neutrally stable region compared to what we
found.

Most of the calculations reported in this paper have been done for f /N̄ = 0.1. This
value, which is approximately 10 times larger than the value in ocean at mid-latitudes,
was commonly used in studies of vortices in rotating stratified flows because at smaller
values the equations of motion are computationally stiff and therefore computationally
expensive to compute because small time steps are necessary. Focusing on vortices
whose interiors are statically stable (i.e. N2

c > 0), we have repeated some of the
calculations with f /N̄ = 0.01 and found the results to remain quantitatively the same
(see table 1 and figure 12). We have further shown that the insensitivity of the
growth rate and eigenvector of the most unstable modes to f /N̄ can be explained
from the non-dimensionalized equations of motion. This is because the most unstable
eigenmodes are found to be approximately in the hydrostatic balance, which could not
be assumed a priori. As a result, the dynamics of these modes is nearly independent
of f /N̄ (as long as this ratio is small, e.g. .0.1) given that this ratio only appears
on the left-hand side of the vertical momentum equation (see § 5 for details). Note
that such insensitivity to f /N̄ is not expected in the region where the vortex interior
is statically unstable (i.e. N2

c < 0).
The results of this paper improve the understanding of the generic stability

properties of 3-D vortices in rotating stratified flows, and as discussed in § 1,
extend the analyses of the previous studies in several ways, including: using the
full 3-D non-hydrostatic Boussinesq equations, which extends the stability analysis
well beyond the usually used QG and shallow-water approximations; focusing on
a widely used model of geophysical and astrophysical vortices, i.e. 3-D Gaussian
vortices with continuous vorticity and density profiles, which, for many applications,
is more appropriate than 2-D models, Taylor columns and/or PV patches that are
often used to simplify the numerical or analytical stability analysis; and performing
the linear stability analysis on vortices that are exact equilibrium solutions of the full
3-D non-hydrostatic Boussinesq equations.

The results also have implications for the two problems that have motivated
many studies of vortex stability in the past: the observed stability of long-lived,
axisymmetric vortices in the oceans and the observed predominance of anticyclones
over cyclones in the oceans (at the mesoscales) and planetary atmospheres (see § 1
for more details). As described above, while neutrally stable vortices are found only
in a very small region of the Ro–Bu parameter space, the maximum (linear) growth
rates in a large region of the parameter space, particularly for anticyclones, are small
compared to the vortex turnaround time, which means that these vortices can remain
nearly axisymmetric for months and even years despite being linearly unstable. This
might explain the observations of long-lived axisymmetric vortices in the oceans,
given that the slowly growing non-axisymmetric flow can be difficult to detect in
the satellite or ship-based observations and in time-averaged measurements (but also
see the next two paragraphs for several caveats). Furthermore, we found the region
of slow growth rates for anticyclones to be much larger than that of the cyclones;
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whether this offers an explanation for the observed cyclone–anticyclone asymmetry in
the oceans (at the mesoscales) and atmospheres requires further studies (see below).

Of course for both problems, the nonlinear stability and nonlinear evolution of
these vortices are very important as well, and will be the subject of a subsequent
publication. In particular, we will discuss that small linear growth rate is neither a
necessary nor a sufficient condition for a vortex to survive long to be observed. It is
not necessary because our nonlinear simulations show that vortices with eigenmodes
with very fast growth rates can have very large Landau coefficients (Drazin & Reid
2004). Thus, even though the original Gaussian vortex becomes quickly unstable, the
instability quickly saturates, and a new equilibrium that looks very similar to the
initial unstable Gaussian vortex is established. A slow (linear) growth rate of the
fastest-growing eigenmode is not sufficient because the equilibrium vortex may be
hard to create from realistic initial conditions, or because nonlinear, finite-amplitude
instabilities destroy it.

The limitations and several important caveats of our analysis, discussed in § 1,
should be again emphasized. The exclusion of background shear, compressible effects,
and vertical variation of N̄ limit the direct application of the results to vortices in the
atmospheres and protoplanetary disk, while using an unbounded domain (hence the
absence of free surface, bottom topography, lateral boundaries) and vertical variation
of N̄ limit the direct applicability of the current analysis to most oceanic eddies.
The results are most relevant to the stability of interior oceanic vortices such as
Meddies. Still, while our results for stability properties and slow growth rates might
explain the observations of long-lived nearly axisymmetric Meddies, our results for
cyclone–anticyclone asymmetry are not relevant to the dominance of anticyclones
among Meddies, which has been suggested to be a result of how Meddies form
(McWilliams 1985).

Nonetheless, the results of this paper provide a stepping stone to study the more
complicated problems of the stability of geophysical and astrophysical vortices, and
the framework developed here can be readily extended to include further complexities
such as the meridional dependence of f (i.e. the β effect), compressible effects (e.g.
by using the anelastic approximation), and the z-dependence of N̄, for example to
account for the thermocline. The framework can be also extended to study the linear
and nonlinear stability of vortices in rotating stratified shearing flows such as Jovian
vortices, vortices in protoplanetary disks and oceanic eddies in the Gulf Stream and
Antarctic Circumpolar Current. For example, planetary anticyclones on Jupiter appear
to have |Ro| < 0.3 and Bu ∼ 1, which gives them a very slow linear growth rate
of instability (according to figure 8). Understanding how the Jupiter’s strong shear
influences the growth rate and the most unstable eigenmode is of great interest and
can be studied in the modified framework.
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Appendix A. Numerical sponge layer
To compute unbounded flows in a triply periodic computational domain, we added

an artificial ‘sponge layer’ far from the vortices that were initially centred at the origin.
This is accomplished by adding Rayleigh drag and Newtonian cooling terms in the
form of −fbdv and −fbdb to the right-hand sides of the momentum and buoyancy
equations in (2.1), respectively, where fbd is a function that smoothly varies from zero
inside a cylindrical surface to a value of one outside of the cylinder, i.e.

fbd = [1− T(z, Lz,bd, sz)T(r, Lr,bd, sr)]/τbd, (A 1)

where Lr,bd is the cylinder diameter, Lz,bd is the height, sr and sz are the steepness in
r and z, τbd is the damping time scale, r= (x2

+ y2)1/2, and

T(γ ,w, s)≡ 1/2(tanh[(γ +w)/s] − tanh[(γ −w)/s]), (A 2)

is top hat function. T smoothly drops from a value of 1 to 0 for |γ | > w/2 over a
distance s. We use τbd = 201t, sr,bd = 0.01(L2

x + L2
y)

1/2, Lr,bd = 0.85(L2
x + L2

y)
1/2, sz,bd =

0.01Lz and Lz,bd = 0.85Lz for the numerical calculations that are carried out here.

Appendix B. Definitions of shield and core
We qualitatively defined core and shield in § 2.3. To prevent our definitions of the

core and shield from including weak-amplitude vorticity that is far from the vortex
itself, we need to define ‘cutoff’ values in order to exclude regions with low-amplitude
vorticity. For a cyclone, we define the core as the contiguous cyclonic region that
includes the vortex centre where ω is greater than a cutoff value of 0.01Ωmax, where
Ωmax is the maximum vorticity of the vortex. The shield is defined as the region(s)
where ω < 0 and |ω| > 0.01|Ωmin|, where Ωmin, is the minimum value of ω in the
vortex. Our choice of 0.01 in these two cutoff values is arbitrary, but the computed
values of the enstrophies Score and Sshield are insensitive to the exact choice of cutoff
value because the integrands in the definitions (6.1) and (6.2) are, by definition, very
small in regions where ω is near the cutoff value. The major influence of the choice
of cutoff value is qualitative and aesthetic as in figure 1(b). With a bad choice of
cutoff value, the core and/or shield can extend outward toward infinity (and therefore
do not look like our intuitive pictures of what a ‘core’ and ‘shield’ should look like).

Appendix C. Eigenmode solver and symmetrizer
We calculate the fastest-growing eigenmodes of the vortices by modifying our

initial-value code into a ‘power method’ analogous to the iterative method used for
finding the eigenvector of a matrix whose eigenvalue has the greatest absolute value
(Press et al. 2007), but we do not use the preconditioners developed by Tuckerman
& Barkley (1988) to speed-up convergence. Rather, we use a spatial symmetrizer
to speed up convergence. The rate of convergence of the power method to the
fastest-growing eigenmode depends on the difference between the growth rate of
the fastest-growing eigenmode and the growth rate of the second fastest-growing
eigenmode. By examining only one spatial symmetry class at a time, we generally
increase the difference between the growth rates of the fastest-growing and second
fastest-growing eigenmodes, and thereby obtain faster convergence.

The easiest way to limit the solutions of the eigenmode solver to modes that
are symmetric or antisymmetric in z is to limit the initial-value solver used in the
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power method to those symmetries. Using our spatially triply periodic code, the
z-dependence of the solutions are represented here with Fourier modes ei2πkz/Lz , where
−Lz/2 6 z < Lz/2, and where k is an integer. Therefore, it is easy to compute
‘z-symmetric’ solutions, where vx, vy, and p are symmetric about z= 0 and ρ, b and
vz are antisymmetric about z= 0 by restricting the former three variables to a cosine
series cos(2πkz/Lz) and the latter three variables to a sine series sin(2πkz/Lz). For
‘z-antisymmetric’ solutions we swap sines with cosines.

When computing solutions in a cylindrical coordinate system (r, φ, z) with a spectral
code, it is trivial to restrict solutions to have only one value of azimuthal wavenumber
M along with its harmonics. With a spectral method, the velocity, pressure, buoyancy
and density are each represented with a truncated series of basis functions in which
the φ dependence is expressed in terms of Fourier modes eimφ , and the r dependence is
expressed in terms of the eigenmodes of a Sturm–Liouville equation chosen such that
the truncated series converges exponentially and such that all of the basis functions are
analytic at the origin (see, for example, the spectral expansions used by Matsushima &
Marcus 1995, 1997). Solutions can be forced to be M-fold symmetric in φ about the
z-axis by restricting the basis functions eimφ in the spectral expansion to wavenumbers
m that are divisible by M.

However, because we plan to add Cartesian shear to our future calculations, say, for
example to represent the Great Red Spot of Jupiter embedded in a shearing zonal flow,
we chose here to compute in Cartesian, rather than cylindrical, coordinates. None the
less, it is still possible to force solutions to have only azimuthal wavenumbers that are
odd, or that are even and divisible by 4, or that are even and not divisible by 4. We
can do this efficiently when the grid of collocation points of the Fourier modes in the
horizontal direction is made of square cells and the horizontal computational domain
is square. In this case, the grid of collocation points is invariant under rotations of
90◦ around the z-axis. To restrict the solution to azimuthal wavenumbers that are even
and divisible by 4 – without interpolation (which causes errors), and without dividing
or multiplying by r (which is problematic near the origin), we do the following
operations after each time step of an initial-value code:

(i) Compute vr and vφ at each grid point from the values of vx and vy at the grid
point.

(ii) Compute a new value vNEW
φ at each grid point (x, y, z) by ‘averaging’ such that

vNEW
φ (x, y, z)≡ [vφ(x, y, z)+ vφ(−y, x, z)+ vφ(−x,−y, z)+ vφ(y,−x, z)]/4. (C 1)

(iii) Do the same type of averaging to create new values vNEW
r , vNEW

z , ρNEW , bNEW

and pNEW .
(iv) Compute vNEW

x and vNEW
y at each grid point from vNEW

r and vNEW
φ at the grid point.

(v) Compute the flow at the next time using the initial-value solver using the NEW
values of all of the variables.

To restrict the solution to azimuthal wavenumbers that are even and not divisible
by 4, we carry out the same procedure as above, but we replace the averaging in
(C 1) with

vNEW
φ (x, y, z)≡ [vφ(x, y, z)− vφ(−y, x, z)+ vφ(−x,−y, z)− vφ(y,−x, z)]/4. (C 2)

To restrict the solution to azimuthal wavenumbers that are odd, we carry out the
same procedure as above, but we replace the averaging in (C 1) with

vNEW
φ (x, y, z)≡ [vφ(x, y, z)− vφ(−x,−y, z)]/2. (C 3)



www.manaraa.com

130 M. Mahdinia, P. Hassanzadeh, P. S. Marcus and C.-H. Jiang

Ro Bu Symmetry σ Ro Bu Symmetry σ

+0.5 0.65 A1 0.26 +0.1 2.0 A1 0.081
+0.5 0.75 S2 0.21 +0.1 2.3 A1 0.091
+0.5 1.0 S2 0.20 +0.05 0.05 A1 1.0
+0.5 1.4 S2 0.18 +0.05 0.1 A1 0.44
+0.5 1.6 S2 0.17 +0.05 0.125 A1 0.28
+0.5 2.0 S2 0.16 +0.05 0.15 A1 0.16
+0.5 2.3 A1 0.16 +0.05 0.25 S2 0.072
+0.45 0.3 A3 1.5 +0.05 0.3 S2 0.067
+0.45 2.3 A1 0.15 +0.05 0.4 S2 0.054
+0.4 0.45 A1 0.4 +0.05 0.6 S2 0.028
+0.4 0.55 A1 0.24 +0.05 1.4 A1 0.040
+0.4 0.65 S2 0.18 +0.05 1.6 A1 0.054
+0.4 0.75 S2 0.17 +0.02 0.02 A1 1.21
+0.4 1.2 S2 0.14 +0.02 0.05 A1 0.58
+0.4 1.4 S2 0.13 +0.02 0.5 S2 0.029
+0.4 1.6 A1 0.13 +0.02 1.3 A1 0.025
+0.35 0.65 S2 0.16 +0.02 1.4 A1 0.034
+0.3 0.25 A1 0.77 +0.02 1.6 A1 0.049
+0.3 0.65 S2 0.13 −0.02 0.05 S2 0.065
+0.25 0.65 S2 0.11 −0.02 0.4 S2 0.029
+0.25 1.4 A1 0.082 −0.02 1.4 A1 0.028
+0.25 1.6 A1 0.092 −0.02 1.6 A1 0.043
+0.2 0.1 A4 2.9 −0.05 0.15 S2 0.053
+0.2 0.15 A2 1.1 −0.05 0.25 S2 0.041
+0.2 0.18 A1 0.76 −0.05 0.3 S2 0.032
+0.2 0.225 A1 0.54 −0.05 1.4 A1 0.024
+0.2 0.26 A1 0.41 −0.1 0.1 S2 0.048
+0.2 0.3 A1 0.29 −0.1 0.15 S2 0.041
+0.2 0.45 S2 0.11 −0.1 1.6 A1 0.032
+0.2 0.55 S2 0.099 −0.15 0.2 S2 0.023
+0.2 0.65 S2 0.089 −0.18 0.15 S2 0.024
+0.2 0.75 S2 0.079 −0.2 1.6 A1 0.023
+0.2 0.85 S2 0.070 −0.2 2.0 A1 0.042
+0.2 1.0 S2 0.058 −0.2 2.3 A1 0.051
+0.2 1.2 A1 0.054 −0.3 1.7 A1 0.021
+0.2 1.4 A1 0.070 −0.35 1.75 A1 0.021
+0.2 1.6 A1 0.081 −0.4 1.8 A1 0.021
+0.2 2.0 A1 0.097 −0.4 2.0 A1 0.028
+0.15 1.0 S2 0.033 −0.4 2.3 A1 0.035
+0.13 1.06 A1 0.02 −0.495 1.5 A1 0.020
+0.1 0.6 S2 0.049 −0.495 1.7 A1 0.029
+0.1 0.8 S2 0.027 −0.495 1.9 A1 0.036
+0.1 1.6 A1 0.062

TABLE 2. The growth rate σ (in units of τ−1) and symmetry of the fastest-growing
eigenmode of vortices with σ > 0.02τ−1 and N2

c > 0 shown by symbols in figure 8(a).

Appendix D. Growth rate and symmetry of selected vortex eigenmodes

The growth rate σ and symmetry of the fastest-growing eigenmode of vortices with
σ > 0.02 (τ−1) and N2

c > 0 shown by symbols in figure 8(a) are presented in table 2.
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